33 resultados para Bcl-2 family

em DigitalCommons@The Texas Medical Center


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Lipopolysaccharide (LPS) and interferon-gamma (IFN) activate macrophages and produce nitric oxide (NO) by initiating the expression of inducible Nitric Oxide Synthase (iNOS). Prolonged LPS/IFN-activation results in the death of macrophage-like RAW 264.7 cells and wild-type murine macrophages. This study was implemented to determine how NO contributes to LPS/IFN-induced macrophage death. The iNOS-specific inhibitor L-NIL protected RAW 264.7 cells from LPS/IFN-activated death, supporting a role for NO in the death of LPS/IFN-activated macrophages. A role for iNOS in cell death was confirmed in iNOS-/- macrophages which were resistant to LPS/IFN-induced death. Cell death was accompanied by nuclear condensation, caspase 3 activation, and PARP cleavage, all of which are hallmarks of apoptosis. The involvement of NO in modulating the stress-activated protein kinase (SAPK)/c-jun N-terminal kinase (JNK) signal transduction pathway was examined as a possible mechanism of LPS/IFN-mediated apoptosis. Western analysis demonstrated that NO modifies the phosphorylation profile of JNK and promotes activation of JNK in the mitochondria in RAW 264.7 cells. Inhibition of JNK with sIRNA significantly reduced cell death in RAW 264.7 cells, indicating the participation of the JNK pathway in LPS/IFN-mediated death. JNK has been demonstrated to induce mitochondrial-mediated apoptosis through modulation of Bcl-2 family members. Therefore, the effect of NO on the balance between pro- and anti-apoptotic Bcl-2 family members was examined. In RAW 264.7 cells, Bim was upregulated and phosphorylated by LPS/IFN independently of NO. However, co-immunoprecipitation studies demonstrated that NO promotes the association of Bax with the BimL splice variant. Examination of Bax phosphorylation by metabolic labeling demonstrated that Bax is basally phosphorylated and becomes dephosphorylated upon LPS/IFN treatment. L-NIL inhibited the dephosphorylation of Bax, indicating that Bax dephosphorylation is NO-dependent. NO also mediated LPS/IFN-induced downregulation of Mcl-1, an anti-apoptotic Bcl-2 family member, as demonstrated by Western blotting for Mcl-1 protein expression. Thus, NO contributes to macrophage apoptosis via a JNK-mediated mechanism involving interaction between Bax and Bim, dephosphorylation of Bax, and downregulation of Mcl-1. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Non-melanoma skin cancer (NMSC) is the most frequently diagnosed form of cancer in United States. As in many other cancers, this slow growing malignancy manifests deregulated expression of apoptosis regulating proteins including bcl-2 family member proteins. To understand the role of apoptosis regulating protein in epidermal homeostasis and progression of NMSC, we investigated keratinocyte proliferation, differentiation and tumorigenesis in bcl-2 and bax null mice. The rate and the pattern of proliferation and spontaneous cell death were the same between the null and the control mice. Both bcl-2 and bax null epidermis showed decreased levels of cytokeratin 14 expression compared to the control littermates. Also, the gene knock out mice showed higher expression of cytokeratin 1 and loricrin in epidermis compared to the control mice. The apoptotic response to genotoxic agent, UV radiation (UVR), was assessed by counting sunburn cells. The bax null keratinocytes showed a resistance to apoptosis while bcl-2 null mice showed an increased susceptibility to cell death compared to the control mice. Moreover, we demonstrated an increase in tumor incidence in bax null mice compared to control littermates in the in vivo chemical carcinogenesis study. Next, we examined the tumor suppressor role of bax protein in NMSC by studying its participation in repair of UVR-mediated DNA lesions. In UVR treated primary keratinocytes from bax deficient mice, the level of CPD remaining was twice that of control cells at 48 hours. Similar results were obtained using embryonic fibroblasts from bax null and bax +/+ embryos, and also with a bax deficient prostate cancer cell line in which bax expression had been restored. However, the repair rate of 6-4 PP was unaffected by the absence of bax protein in all three of above mentioned cell types. In conclusion, bax protein may have a dual function in its role as tumor suppressor in NMSC. Bax may directly or indirectly facilitate DNA repair, or programmed cell death if DNA damage is too severe, thus, in either function, preserving genomic integrity following a genotoxic event. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Bcl-2, a crucial regulator of cell survival, is frequently overexpressed in basal cell carcinomas (BCCs), the most commonly diagnosed cancers. Regulation of bcl-2 expression in epidermal keratinocytes is not well characterized. In the epidermis, bcl-2 is expressed only in keratinocytes of the basal layer and the outer root sheath of hair follicles and no bcl-2 expression in suprabasalar keratinocytes. The calcium gradient in the epidermis is a potent regulator of keratinocyte differentiation. Increasing calcium concentrations associated with differentiation, resulted in the downregulation of a 2.9 kb bcl-2 promoter luciferase construct. The AP-1 family of transcription factors is differentially expressed in the strata of the epidermis and has been shown to be involved in the stage specific expression of numerous differentiation markers in the epidermis. In silico analysis of the bcl-2 promoter and gene reporter assays showed that co-transfection of JUNB and JUND, but not other AP-1 dimers, caused a significant upregulation of the bcl-2 promoter in primary keratinocytes. Immunoelectrophoretic mobility shift assays, in vivo chromatin immunoprecipitation (ChIP) studies and mutational analysis of AP-1 binding site 3 on the bcl-2 promoter identified it as the site involved in bcl-2 regulation. Utilizing site directed mutants, we determined that phosphorylation at Ser90/Ser100 residues of JUND is required for the activation of the bcl-2 promoter. ^ The sonic hedgehog (SHH) pathway is frequently deregulated in BCCs and, we have shown that GLI1 upregulates bcl-2 in keratinocytes. While examining potential regulation of the SHH pathway extracellular calcium, we found that higher calcium concentrations are associated with lowered HH pathway activity and upregulation of suppressor of fused (SUFU) which negatively regulates the SHH pathway. ChIP assays, and in vivo mouse models, show that ΔNp63α, a crucial regulator of epidermal development, binds and activates the SUFU promoter in differentiating keratinocytes. Increasing SUFU levels prevent transactivation of the bcl-2 promoter. In vitro SUFU knockdown along with in vivo SUFU+/− murine models demonstrate a significant upregulation of bcl-2 expression. ^ In conclusion, the spatial and temporal expression of bcl-2 during keratinocyte differentiation in the epidermis is a complex process requiring cooperative interactions of specific signaling cascades and transcription factors. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The role of oxidative stress and apoptosis has recently been recognized as an important determinant in the development of a variety of diseases known to man. The oncogene BCL-2 is known to regulate sensitivity to induction of apoptosis and appears to function in an antioxidant pathway by regulating glutathione. We have investigated various steps in the oxidative stress cascade to determine possible sites of action for BCL-2. The fluorescent probes H2DCFDA, dihydroethidium and cis-parinaric acid were used to quantitate generation of peroxides, superoxide and lipid peroxidation, respectively. While each of these agents was able to detect substantial increases in oxidative stress following exposure of cells to ionizing radiation, there was no significant difference between cells expressing high or low levels of BCL-2. Investigation of mitochondrial dysfunction during apoptosis revealed a possible site of bcl-2 intervention, but, analysis of kinetic events occurring during apoptosis suggested that the observed effect is not in the direct apoptotic effector pathway. When glutathione was studied, localization to the nucleus was observed in cells overexpressing BCL-2 that did not occur in cells lacking BCL-2. Additionally, nuclear accumulation of glutathione was sufficient to block granzyme b-mediated nuclear DNA fragmentation, poly (ADP-ribose) polymerase cleavage and caspase activity suggesting that nuclear accumulation of glutathione via a bcl-2 dependent process is functionally relevant to suppression of apoptosis. Thus, a model system emerges where BCL-2 is able to regulate a cell's ability to prevent apoptosis by modifying the cell's antioxidant systems at the organelle level to compensate for oxidative stresses placed upon it. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Follicular lymphoma is the most common lymphoid malignancy in humans. The bcl-2 transgenic mice, which mimic the human follicular lymphoma, initially exhibit a polyclonal hyperplasia due to the overriding of apoptosis by deregulated bcl-2. After a latency period of 15 month 20% of the animals developed clonal lymphomas. Approximately, 50% of these high grade lymphomas presented chromosomal translocations involving c-myc, suggesting that deregulation of this gene is important in the complementation with bcl-2. E$\mu$-myc x bcl-2 double transgenic mice were generated to assess the ability of this two genes to complement in an in vivo system. The double transgenic mice presented a shortened latency (3-4 weeks) and higher incidence of tumor development. Quantification of the extent of programmed cell death indicated that bcl-2 can abrogate the high rate of apoptotic cell death that results from myc deregulation. Bcl-2-Ig, E$\mu$-myc, and bcl-2/E$\mu$-myc lymphomas were examined using PCR-SSCP to detect the presence of p53 mutations in exons 5-9. A high incidence of p53 mutations in E$\mu$-myc lymphomas suggested that inactivating lesions of p53 may represent an important step in the genetic complementation of c-myc in lymphomagenesis. Surprisingly, p53 mutations were quite uncommon in bcl-2 lymphomas suggesting that inactivating mutations of p53 and overexpression of bcl-2 may not cooperate in lymphoma progression. To assess this question, we generated mice that contained a deregulated bcl-2 gene and were nullizygous for p53 (p53KO). No reduction in the tumor latency was observed in the p53KO/bcl-2-Ig hybrid mice when compared with p53 KO mice. Using splenic mononuclear cells isolated from p53KO mice and bcl-2 transgenic mice we demonstrated that bcl-2 suppresses p53 mediated apoptosis in response to DNA damage initiated by $\gamma$-radiation even though p53 protein is induced normally in the bcl-2 overexpressing cells. Western analysis of the expression of p53 target proteins after $\gamma$-radiation showed a correlation between the p53-dependent induction of bax protein after radiation and the ability of p53 to mediate apoptosis. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The most common molecular alterations observed in prostate cancer are increased bcl-2 protein expression and mutations in p53. Understanding the molecular alterations associated with prostate cancer are critical for successful treatment and designing new therapeutic interventions. Hormone-ablation therapy remains the most effective nonsurgical treatment; however, most patients will relapse with hormone-independent, refractory disease. This study addresses how hormone-ablation therapy may increase bcl-2, develops a transgenic model to elucidate the role of bcl-2 multistep prostate carcinogenesis, and assesses how bcl-2 may confer resistance to cell death induction using adenoviral wild-type p53 gene therapy. ^ Two potential androgen response elements were identified in the bcl-2 promoter. Bcl-2 promoter luciferase constructs were transfected into the hormone- sensitive LNCaP prostate cell line. In the presence of dihydrotestosterone, the activity of one bcl-2 promoter luciferase construct was repressed 40% compared to control cells grown in charcoal-stripped serum. Additionally, it was demonstrated that both bcl-2 mRNA and protein were downregulated in the LNCaP cells grown in the presence DHT. This suggests that DHT represses bcl-2 expression through possible direct and indirect mechanisms and that hormone-ablation therapy may actually increases bcl-2 protein. ^ To determine the role of bcl-2 in prostate cancer progression in vivo, probasin-bcl-2 mice were generated where human bcl-2 was targeted to the prostate. Increased bcl-2 expression rendered the ventral prostate more resistant to apoptosis induction following castration. When the probasin-bcl-2 mice were crossed with TRAMP mice, the latency to tumor formation was decreased. The expression of bcl-2 in the double transgenic mice did not affect the incidence of metastases. The double transgenic model will facilitate the study of in vivo effects of specific genetic lesions during the pathogenesis of prostate cancer. ^ The effects of increased bcl-2 protein on wild-type adenoviral p53-mediated cell death were determined in prostatic cell lines. Increased bcl-2 protected PC3 and DU145 cell lines, which possess mutant p53, from p53-mediated cell death and reductions in cell viability. Bcl-2 did not provide the same protective effect in LNCaP cell line, which expresses wild-type p53. This suggests that the ability of bcl-2 to protect against p53-mediated cell death is dependent upon the endogenous status of p53. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Elevated expression levels of the bcl-2 proto-oncogene have been correlated with the appearance of androgen independence in prostate cancer. Although bcl-2 was first cloned as the t (14:18) translocation breakpoint from human follicular B cell lymphoma, the mechanism of overexpression of bcl-2 is largely undefined for advanced prostate cancer, there being no gross alterations in the gene structure. We investigated the role of the product of the prostate apoptosis response gene-4 (Par-4) and the product of the Wilms' tumor 1 gene (WT1) in the regulation of Bcl-2 expression in prostate cancer cell lines. We observed growth arrest and apoptosis, upon decreasing Bcl-2 protein and transcript in the high Bcl-2 expressing, androgen-independent prostate cancer cell lines, by all trans-retinoic acid treatment but this did not occur in the androgen-dependent cell lines expressing low levels of Bcl-2. Changes in localization of Par-4, and an induction in the expression of WT1 protein accompanied the decrease in the Bcl-2 protein and transcript following all trans-retinoic acid treatment, in the androgen-independent prostate cancer cell line. In stable clones expressing ectopic Par-4 we observed decreased Bcl-2 protein and transcript. This was accompanied by an induction in WT1 expression. Finally, we detected Par-4 and WT1 proteins binding to a previously identified WT1 binding site on the bcl-2 promoter both in vitro and in vivo leading to a decrease in transcription from the bcl-2 promoter. We conclude that Par-4 regulates Bcl-2 through a WT1 binding site on the bcl-2 promoter. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

To assess the effect of deregulated Ha-ras and bcl-2, individually and in combination on epidermal keratinocyte homeostasis and during multistep skin carcinogenesis, we generated skin-specific transgenic mice and keratinocyte transfectants constitutively expressing oncogenic Ha-ras and bcl-2 proteins. The deregulated Ha-ras and bcl-2 expression contributing to homeostatic imbalances in the skin had an additive effect on the probability of tumor development. They were also cooperative in incidence, growth, and latency of tumor formation, and they exhibited synergistic cooperation in malignant transformation of benign papillomas. To explain the homeostatic imbalances by Ha-ras and bcl-2 overexpression in the skin, we investigated the three major cellular processes of proliferation, cell death, and differentiation. Epidermal expression of Bcl-2 retarded keratinocyte proliferation in the epidermis of neonatal mice compared with results for control littermates. Constitutive expression of Ha-ras increased keratinocyte proliferation, and co-expression of bcl-2 modestly suppressed the ras-mediated abnormal proliferation of neonatal keratinocytes. Bcl-2 proteins in keratinocytes protected UV-treated cells from apoptotic cell death regardless of oncogenic ras expression in both non-neoplastic neonatal epidermis and human keratinocyte cell lines. The spontaneous apoptotic index (AI) was also lower in papillomas constitutively expressing bcl-2 compared with the ones that developed in control mice. Ras-overexpressing epidermis, including that in ras/bcl-2 double transgenic mice, had abnormal differentiation patterns compared with controls. The oncogenic ras protein had alterations in both epidermal distribution and the extent of cytokeratin 14 and involucrin expression. Abnormal expression of the hyperproliferation marker cytokeratin 6 and modest down regulation of cytokeratin 1 were also detected. Late appearance of filaggrin was another abnormal phenotype of the ras-expressing epidermis. Overexpression of bcl-2 had no effect on epidermal differentiation. Together, these findings suggest that constitutive expression of oncogenic Ha-ras and bcl-2 are important determinants of epidermal proliferation, viability and differentiation. In summary, our results demonstrated that the disruption of epidermal homeostasis by overexpressed ras and bcl-2 predisposes to hyperplastic growth of the epidermis and to papilloma development and that these proteins with distinct mechanisms for oncogenesis are functionally synergistic for malignant transformation of chemically induced skin carcinogenesis. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Gastrointestinal stromal tumors (GISTs) are oncogene-addicted cancers driven by activating mutations in the genes encoding receptor tyrosine kinases KIT and PDGFR-α. Imatinib mesylate, a specific inhibitor of KIT and PDGFR-α signaling, delays progression of GIST, but is incapable of achieving cure. Thus, most patients who initially respond to imatinib therapy eventually experience tumor progression, and have limited therapeutic options thereafter. To address imatinib-resistance and tumor progression, these studies sought to understand the molecular mechanisms that regulate apoptosis in GIST, and evaluate combination therapies that kill GISTs cells via complementary, but independent, mechanisms. BIM (Bcl-2 interacting mediator of apoptosis), a pro-apoptotic member of the Bcl-2 family, effects apoptosis in oncogene-addicted malignancies treated with targeted therapies, and was recently shown to mediate imatinib-induced apoptosis in GIST. This dissertation examined the molecular mechanism of BIM upregulation and its cytotoxic effect in GIST cells harboring clinically-representative KIT mutations. Additionally, imatinib-induced alterations in BIM and pro-survival Bcl-2 proteins were studied in specimens from patients with GIST, and correlated to apoptosis, FDG-PET response, and survival. Further, the intrinsic pathway of apoptosis was targeted therapeutically in GIST cells with the Bcl-2 inhibitor ABT-737. These studies show that BIM is upregulated in GIST cells and patient tumors after imatinib exposure, and correlates with induction of apoptosis, response by FDG-PET, and disease-free survival. These studies contribute to the mechanistic understanding of imatinib-induced apoptosis in clinically-relevant models of GIST, and may facilitate prediction of resistance and disease progression in patients. Further, combining inhibition of KIT and Bcl-2 induces apoptosis synergistically and overcomes imatinib-resistance in GIST cells. Given that imatinib-resistance and GIST progression may reflect inadequate BIM-mediated inhibition of pro-survival Bcl-2 proteins, the preclinical evidence presented here suggests that direct engagement of apoptosis may be an effective approach to enhance the cytotoxicity of imatinib and overcome resistance.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Trophism as a "clonal dominance" support mechanism for tumor cells is an unexplored area of tumor progression. This report presents evidence that the human melanoma low-affinity neurotrophin receptor (p75) can signal independently of its high-affinity tyrosine kinase counterparts, the TRK family of kinases. Signaling may be accomplished by a p75-associated purine-analog-sensitive kinase and results in enhanced invasion into a reconstituted basement membrane with a corresponding stimulation of matrix metalloproteinase-2 expression. Additionally, a "stress culture" survival assay was developed to mimic the growth limiting conditions encountered by melanoma cells in a rapidly growing primary tumor or metastatic deposit prior to neoangiogenesis. Under these conditions, p75, promotes the survival of high p75 expressing brain-colonizing melanoma cells. Extensive 70W melanoma cell-cell contact, which downregulates p75, immediately precedes the induction of cell death associated with diminished production of two key cell survival factors, bcl-2 and the p85 subunit of phosphoinositol-3-kinase, and an elevation in apoptosis promoting intracellular reactive oxygen species (ROSs). Since one function of bcl-2 may be to control the generation of ROSs via the antioxidant pathway, these cells may receive a apoptosis-prompting "double hit". 70W melanoma cell death occurred by an apoptotic mechanism displaying classical morphological changes including plasma membrane blebbing, loss of microvilli and redistribution of ribosomes. 70W apoptosis could be pharmacologically triggered following anti-p75 monoclonal antibody-mediated clustering of p75 receptors. 70W cells fluorescently sorted for high-p75 expression (p75$\sp{\rm H}$ cells) exhibited an augmented survival potential and a predilection to sort with the S + G2/M growth phase, relative to their low p75 expressing, p75$\sp{\rm L}$ counterparts. Apoptosis is significantly delayed by p75$\sp{\rm H}$ cells, whereas p75$\sp{\rm L}$ cells are exquisitely prone to initiate apoptosis. Importantly, the p75$\sp{\rm L}$ cells that survive apoptosis, highly re-expressed p75 and were remarkably responsive to exogenous NGF.^ These are the first data to implicate p75-mediated neurotrophism as an invasion and survival support mechanism employed by brain-metastatic cells. In particular, these results may have implications in little understood phenomena of tumor progression, such as the emergence of "clonal dominance" and tumor dormancy. ^

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Many human diseases, including cancers, result from aberrations of signal transduction pathways. The recent understanding of the molecular biochemistry of signal transduction in normal and transformed cells enable us to have a better insight about cancer and design new drugs to target this abnormal signaling in the cancer cells. Tyrosine kinase pathway plays a very important role in normal and cancer cells. Enhanced activity of tyrosine kinases has been associated with many human cancer types. Therefore, identifying the type of tyrosine kinases involved in a particular cancer type and blocking these tyrosine kinase pathways may provide a way to treat cancer. Receptor tyrosine kinase expression, namely epidermal growth factor receptor (EGFR) family, was examined in the oral squamous cell carcinoma patients. The expression levels of different members of the EGFR family were found to be significantly associated with shorter patients' survival. Combining EGFR, HER-2/neu, and HER-3 expression can significantly improve the predicting power. The effect of emodin, a tyrosine kinase inhibitor, on these receptors in head and neck squamous cell carcinoma cell lines was examined. Emodin was found to suppress the tyrosine phosphorylation of HER-2/neu and EGF-induced tyrosine phosphorylation of EGFR. Emodin also induced apoptosis and downregulated the expression of anti-apoptotic protein bcl-2 in oral squamous cell carcinoma cells. It is known that tyrosine kinase pathways are involved in estrogen receptor signaling pathway. Therefore, the effects of inhibiting the tyrosine kinase pathway in estrogen receptor-positive breast cancers was studied. Emodin was found to act similarly to antiestrogens, capable of inhibiting estrogen-stimulated growth and DNA synthesis, and the phosphorylation of Rb protein. Interestingly, emodin, and other tyrosine kinase inhibitors, such as RG 13022 and genistein, depleted cellular levels of estrogen receptor protein. Emodin-induced depletion of estrogen receptor was mediated by the proteasome degradation pathway. In summary, we have demonstrated that tyrosine kinase pathways play an important role in oral squamous cell carcinoma and estrogen receptor-positive breast cancer. Targeting the tyrosine kinases by inhibitors, such as emodin, may provide a potential way to treat the cancer patients. ^

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Interleukin-2 (IL-2) is a major T cell growth factor and plays an essential role in the development of normal immune responses. The Janus kinases (Jaks) and Signal transducers and activators of transcription (Stats) are critical for transducing signals from the IL-2 receptors (IL2Rs) to the nucleus to control cell growth and differentiation. In recent years there has been increasing evidence to indicate that the IL-2 activated Jak3/Stat5 pathway provides a new molecular target for immune suppression. Thus, understanding the regulation of this effector cascade has important therapeutic potential.^ One objective of this work was to identify and define the role and molecular mechanism of novel phosphorylation sites in Jak3. Using functional proteomics, three novel Jak3 phosphorylation sites, Y904, Y939 and S574 were identified. Phosphospecific antibodies confirmed that phosphorylation of Y904 and Y939 were mediated by IL-2 and other IL-2 family cytokines in distinct cell types. Biochemical analysis demonstrated that phosphorylation of both Y904 and Y939 positively regulated Jak3 enzymatic activity, while phosphorylation of S574 did not affect Jak3 in vitro kinase activity. However, a gain-of-function mutation of S574 in Jak3 abrogated IL-2 mediated Stat5 activation, suggesting that phosphorylation of this residue might serve a negative role to attenuate IL-2 signaling. Furthermore, mechanistic analysis suggested that phosphorylation of Y904 in Jak3 affects the KmATP of Jak3, while phosphorylation of Y939 in Jak3 was required to bind one of its substrates, Stat5.^ The second objective was to determine the role of serine/threonine phosphatases in the regulation of the IL2R complex. Activation of Jak3 and Stat5 by IL-2 is a transient event mediated by phosphorylation. Using a specific PP1/PP2A inhibitor, we observed that inhibition of PP1/PP2A negatively regulated the IL-2 activated Jak3/Stat5 signaling pathway in a human NK cell line (YT) and primary human T cells. More importantly, coimmunoprecipitation assays indicated that inhibition of PP1/PP2A blocked the formation of an active IL2R complex. Pretreatment of cells with the inhibitor also reduced the electrophoretic mobility of the IL2Rβ and IL2Rγ subunits in YT cells, suggesting that inhibition of PP1/PP2A directly or indirectly regulates undefined serine/threonine kinases which phosphorylate these proteins. Based on these observations, a model has emerged that serine/threonine phosphorylation of the IL2Rβ and IL2Rγ subunits causes a conformational change of these proteins, which disrupts IL2R dimerization and association of Jak3 and Stat5 to these receptors.^

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Previous studies from our lab have shown distinctive patterns of expression of bcl-2 gene family members in human nonmelanoma skin cancer (NMSC). To further evaluate the significance of these observations and to study the effects of cell death deregulation during skin carcinogenesis, we generated a transgenic mouse model (HK1.bcl-2) using the human keratin 1 promoter to target the expression of a human bcl-2 minigene to the epidermis. Transgenic protein expression was confirmed in all the layers of the epidermis except the stratum corneum using immunohistochemistry. Multifocal epidermal hyperplasia, without associated hyperkeratosis, was observed in newborn HK1.bcl-2 mice. Immunofluorescence staining using monoclonal antibodies specific for a variety of differentiation markers revealed aberrant expression of keratin 6 (K6) in the transgenic epidermis. Epidermal proliferative indexes, assessed by anti-BrdUrd immunofluorescence staining, were similar in control and transgenic newborn mice, but suprabasal proliferating cells were seen within the hyperplastic areas of the transgenic mouse skin. Spontaneous apoptotic indices of the epidermis were similar in both control and HK1.bcl-2 transgenic newborn mice, however, after UV-B irradiation, the number of "sunburn cells" was significantly higher in the control compared to the HK1.bcl-2 transgenic animals.^ Adult HK1.bcl-2 and control littermate mice were used in UV-B and chemical carcinogenesis protocols including DMBA + TPA. UV-B irradiated control and HK1.bcl-2 mice had comparable incidence of tumors than the controls, but the mean latency period was significantly shorter in the HK1.bcl-2 transgenic. Both control and transgenic animals included in chemical carcinogenesis protocols required application of both the initiating (DMBA) and promoting (TPA) agents to develop tumors. The frequency, number, and latency of tumor formation was similar in both groups of animals, however, HK1.bcl-2 mice exhibited a rate of conversion from benign papilloma to carcinoma 2.5 times greater than controls.^ Similar carcinogenesis experiments were performed using newborn mice. HK1.bcl-2 mice treated with UV-B plus TPA have a three fold greater incidence of tumor formation compared to controls littermates. HK1.bcl-2 transgenic animals also exhibited a shorter latency for papilloma formation when treated with DMBA plus TPA.^ HK1.bcl-2/v-Ha-ras double transgenic mice shared phenotypic features of both HK1.v-Ha-ras and HK1.bcl-2 transgenic mice, and exhibited focal areas of augmented hyperplasia. These double transgenic mice were susceptible to tumor formation by treatment with TPA alone.^ Cultures of primary keratinocytes were established from control, HK1.bcl-2, HK1.Ha-ras, and HK1.bcl-2/v-Ha-ras newborn mice. Cell viability was determined after exposure of the cells to UV-B irradiation, DMBA, TPA, or TGF-$\beta$1. Internucleosomal DNA fragmentation ("ladders") and morphological cellular changes compatible with apoptotic cell death were observed after the application of all these agents. HK1.bcl-2 keratinocytes were resistant to cell death induction by all of these agents except TGF-$\beta$1. HK1.Ha-ras cells had a higher spontaneous rate of cell death which could be compensated by co-expression of bcl-2.^ These findings suggest that bcl-2 dependent cell death suppression may be an important component of multistep skin carcinogenesis. ^

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The aberrant activation of signal transduction pathways has long been linked to uncontrolled cell proliferation and the development of cancer. The activity of one such signaling module, the Mitogen-Activated Protein Kinase (MAPK) pathway, has been implicated in several cancer types including pancreatic, breast, colon, and lymphoid malignancies. Interestingly, the activation of MAP-Kinase-Kinase-Kinase proteins often leads to the additional activation of NF-κB, a transcription factor that acts as a cell survival signal through its control of antiapoptotic genes. We have investigated the role of a specific dimer form of the NF-κB transcription factor family, NF-κB1 (p50) homodimers, in its control of the proto-oncogene, Bcl-2, and we have identified the MEK/ERK (MAPK) signaling cascade as a mediator of NF-κB1 activity. ^ Two murine B cell lymphoma cell lines were used for these studies: LY-as, an apoptosis proficient line with low Bcl-2 protein expression and no nuclear NF-κB activity, and LY-ar, a nonapoptotic line with constitutive p50 homodimer activity and 30 times more Bcl-2 protein expression than LY-as. Experiments modulating p50 activity correlated the activation of p50 homodimers with Bcl-2 expression and additional gel shift experiments demonstrated that the Bcl-2 P1 promoter had NF-κB sites with which recombinant p50 was able to interact. In vitro transcription revealed that p50 enhanced the production of transcripts derived from the Bcl-2 P1 promoter. These data strongly suggest that Bcl-2 is a target gene for p50-mediated transcription and suggest that the activation of p50 homodimers contributes to the expression of Bcl-2 observed in LY-ar cells. ^ Studies of upstream MAPK pathways that could influence NF-κB activity demonstrated that LY-ar cells had phosphorylated ERK proteins while LY-as cells did not. Treatment of LY-ar cells with the MEK inhibitors PD 98059, U0126, and PD 184352 led to a loss of phosphorylated ERK, a reversal of nuclear p50 homodimer DNA binding, and a decrease in the amount of Bcl-2 protein expression. Similarly, the activation of the MEK/ERK pathway in LY-as cells by phorbol ester led to Bcl-2 expression that could be blocked by PD 98059. Furthermore, treatment of LY-ar cells with TNFα, an IKK activator, did not change the suppressive effect of PD 98059 on p50 homodimer activity, suggesting an IKK-independent pathway for p50 homodimer activation. Lastly, all three MEK inhibitors sensitized LY-ar cells to radiation-induced apoptosis. ^ These data indicate that the activation of the MEK/ERK MAP-Kinase signaling pathway acts upstream of p50 homodimer activation and Bcl-2 expression in this B cell lymphoma cell system and suggest that the activation of MEK/ERK may be a key step in the progression of lymphoma to advanced-staged disease. Other researchers have used MEK inhibitors to inhibit cell growth and sensitize a number of tumors to chemotherapies. In light of our data, MEK inhibitors may additionally be useful clinically to radiosensitize cancers of lymphoid origin. ^

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Tumor necrosis factor (TNF) is known to have antiproliferative effects on a wide variety of tumor cells but proliferative effects on normal cells. However, the molecular basis for such differences in the action of TNF are unknown. The overall objectives of my research are to investigate the role of oncogenes in TNF sensitivity and delineate some of the molecular mechanisms involved in TNF sensitivity and resistance. To accomplish these objectives, I transfected TNF-resistant C3H mouse embryo fibroblasts (10T1/2) with an activated Ha-ras oncogene and determined whether these cells exhibit altered sensitivity to TNF. The results indicated that 10T1/2 cells transfected with an activated Ha-ras oncogene (10T-EJ) not only produced tumors in nude mice but also exhibited extreme sensitivity to cytolysis by TNF. In contrast, 10T1/2 cells transfected with the pSV2-neo gene alone were resistant to the cytotoxic effects of TNF. I also found that TNF-induced cell death was mediated through apoptosis. The differential sensitivity of 10T1/2 and 10T-EJ cell lines to TNF was not due to differences in the number of TNF receptors on their cell surface. In addition, TNF-resistant revertants isolated from Ha-ras-transformed, TNF-sensitive cells still expressed the same amount of p21 as TNF-sensitive cells and were still tumorigenic, suggesting that Ha-ras-induced transformation and TNF sensitivity may follow different pathways. Interestingly, TNF-resistant but not sensitive cells expressed higher levels of bcl-2, c-myc, and manganese superoxide dismutase (MnSOD) mRNA following exposure to TNF. However, TNF treatment resulted in a marginal induction of p53 mRNA in both TNF-sensitive and resistant cells. Based on these results I can conclude that (i) Ha-ras oncogene induces both transformation and TNF sensitivity, (ii) TNF-induced cytotoxicity involves apoptosis, and (iii) TNF-induced upregulation of bcl-2, c-myc, and MnSOD genes is associated with TNF resistance in C3H mouse embryo fibroblasts. ^